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The effects of internal circulation in bubbles and droplets have been analysed by 
means of a semi-analytical series-truncation method. The equations of motion are 
transformed into a series of coupled, ordinary, nonlinear differential equations by 
use of orthogonal sets. These infinite-series equations are then truncated adequately 
and solved numerically. Using this series-truncation method, we have evaluated the 
effects of different ratios (between the continuous and dispersed phases) of both 
density and viscosity for the flows of low Reynolds numbers. For all the density ratios 
investigated, the density difference has almost no effect on the drag coefficient at low 
Reynolds numbers. The shear stress and the drag coefficient increase with increasing 
viscosity ratio of droplet to ambience and decrease with increasing Reynolds number. 

1. Introduction 
This investigation is aimed at the theoretical evaluation of the flow patterns, both 

inside and outside of a fluid sphere moving in an immiscible fluid at low Reynolds 
numbers. The analyses were made through an efficient semi-analytical numerical 
procedure. Solutions to the problem provide the flow patterns inside and outside of 
the sphere, the drag coefficient, and the effects of viscosity ratio and density ratio on 
the motion of a fluid sphere. 

The current problem is the study of the steady incompressible axially symmetric 
viscous flow over a fluid sphere which is simultaneously experiencing an internal 
motion induced by the external flow. In  the past, extensive work has been done in 
the area of flow over solid spheres and gas bubbles, where the internal motion is 
either absent or unimportant. In the low-Reynolds-number flow, Proudman & Pear- 
son (1957) successfully refined Stokes’ creeping-flow solution through the matched 
asymptotic expansions, and their work has been further improved by Chester & 
Breach (1963). Typical numerical solutions for flow over solid spheres were given by 
Dennis & Walker (1964), Hamielec, Hoffman & Ross (1967), and LeClair, Hamielec 
& Pruppacher (1970), for a wide range of Reynolds numbers. Maxworthy (1965), 
Pruppacher & Steinberger (1968), Beard & Pruppacher (1969), and Pruppacher, 
LeClair & Hamielec (1970) have published experimental results and showed com- 
parisons with theoretical results. 

For fluid drops or gas bubbles moving in another fluid of comparable or higher 
viscosity, results have been developed for high Reynolds numbers, where the major 
simplification is the existence of thin viscous boundary layers on both sides of the 
interfaces, with the flow being slightly perturbed from inviscid solutions. Typical 
papers in this area are by Moore (1963), Chao (1962), Winnikow & Chao (1966), and 
Harper & Moore (1968). Both Chao (1962) and Winnikow & Chao (1966) contain 
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technical errors as pointed out by Harper (1972). The experimental work of Winnikow 
& Chao (1966) is considered very good. However, the theory of all the above is not 
applicable to liquid spheres in a low-viscosity environment, and this is due to the 
difference in viscosity ratio and density ratio. Prakash & Sirignano (1980) have 
published an approximate method for liquid fuel spheres in a gas atmosphere, and 
the flow pattern is close to that found for flow over solid spheres. The internal flow 
of a liquid droplet was found to be two orders of magnitude slower than that of a 
gas bubble. A lot of work with liquid droplets has been done by meteorologists. For 
example, see McDonald (1954), Pruppacher & Beard (1970) and Pruppacher & Klett 
(1978). A closed-form solution for flow over a fluid sphere in the creeping-flow range 
was provided by Rybczynski (1911) and Hadamard (1911). Harper (1972) provides 
us with an excellent review for motions of bubbles and droplets. Clift, Grace & Weber 
(1978) also give a review on this subject. 

Considering higher-Reynolds-number flow, Hamielec & Johnson (1962) and later 
Hamielec, Storey & Whitehead (1963) used a Galerkin treatment to obtain polynomial 
solutions for ratios of inside to outside viscosity from 0 to lo5, and the effects of 
interior Reynolds numbers were not mentioned. Later, Nakano & Tien (1963) used 
a Galerkin treatment for a solution of similar flow conditions, adding to the work 
of Hamielec et al. an additional parameter of the inside Reynolds number. None of 
the above Galerkin methods were in good agreement with the Hadamard-Rybczynski 
solution at low-Reynolds-number flow because the trial functions do not contain the 
necessary term. Later, Abdel-Alim & Hamielec (1975) developed a solution for the 
drag of a fluid sphere, without regarding the interior Reynolds number. This solution 
was not in agreement with Hadamard (1911) and Rybczynski’s (1911) creeping-flow 
solution. That was probably because the free-stream condition was not set far enough 
numerically from the droplet surface. The solution, however, was in agreement with 
their own experimentally determined drag coefficients with a density ratio of near 
unity for large Reynolds numbers. Rivkind, Ryskin & Fishbein (1976) have used 
ordinary finite-difference methods to solve for a limited number of viscosity ratios 
with exterior Reynolds numbers ranging from 0.5 to 200. They concluded that the 
drag coefficient for a fluid sphere could be approximated by 

where GP is the ratio of the inside to outside viscosities, C,, is the drag coefficient 
of a solid sphere (GP + OO), and CDo is the drag coefficient of a gas bubble in liquid 
(GP+O). They also concluded that, for exterior Reynolds numbers ranging between 
5 and 100, the interior Reynolds number has an insignificant effect on the drag 
coefficient. Rivkind & Ryskin (1976) published another paper of a similar account. 
The calculated drag coefficients of the later publication appear to approach asymp- 
totically the predicted creeping-flow solution. 

In the published literature on the motion of a fluid sphere as reviewed above, mainly 
extreme cases like flow over a solid sphere (GP = pi/,u,,+ CO) and flow over a gas 
bubble ( Qp + O )  have been investigated, whereas, for low- but finite-Reynolds- 
number flow, little work has been done. This paper is intended to help fill this gap for 
the low-Reynolds-number flow by analysing the effects of viscosity and density 
ratios in the fluid flow. 
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2. Basic Assumptions 

that droplets stay reasonably spherical if the Weber number is below 0.1) .  

reaction. 

(a) The droplet remains spherical (Rivkin et al. (1976) cite experimental evidence 

(b) Both fluids are Newtonian and mutually immiscible, and there is no chemical 

(c) The system involves only purified fluids (there are no surface-active materials). 
( d )  There is no interfacial mass transfer (the radial velocity is zero a t  the interface). 
(e) Fluid properties are constant and the flow is steady. 

3. Theoretical formulation 
A fluid sphere of density pi, viscosity pi is moving steadily in another fluid of 

density po, viscosity po, and the internal motion is fully developed. The schematic 
representation of the physical model and coordinate system is shown in figure 1.  The 
equation of continuity is satisfied by introducing the dimensionless stream function 
$(& 0) defined by the following equations: 

- e-2f a$., 
u0=-- sine a0 ' a t  D o = - -  (exterior), a < r ;  

e-=E all., 

with = ln r ;  

where the velocities are non-dimensionalized by the free-stream velocity U,, $ by 
Uooa2, and r by the radius a. The other variable to be used is the dimensionless 
vorticity o ( r ,  0)  defined by the equation 

(exterior), 1 < r.  

The equations of motion satisfied by $i and wi are then: 

E2$i = - r  (sini9)wi; 

where 

The exterior equations of motion are given as: 
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with 

Internal 
circulation 

FIQURE 1. Schematic and coordinate system. 

P o  Pi 
Pi Po 

Re, = Rei- -. 

The boundary conditions t o  be satisfied are : 
(I) At the interface r = 1, 

vi = v,, continuity of tangential velocity, (5a)  

ui = u, = 0, no mass transfer a t  the interface ( 5 b )  

(where the subscripts i and o denote the inside and outside parameters, respectively) ; 

(11) At the free stream r + co , 

t,bo+2p~~ sin2 0 as c+ 00, 

w,+O as&oo, 

(111) At the sphere centre r +O,  

ki+0 asr+O, 

wi+O asr+O. 

4. Solution procedure 
A very attractive numerical method due to Van Dyke (1965), which was developed 

for spherical geometry and low and moderate Reynolds numbers, has been shown 
to be effective from the point of both computer economy and calculation accuracy 
in the area of fluid motion and heat transfer around a solid sphere. This semi-analytical 
numerical procedure of series-truncation, spectral type of method, has been success- 



Steady $ow8 inside and around a &id sphere 219 

fully used by Underwood (1969), Dennis & Walker (1971) and Dennis, Walker & 
Hudson (1973). They applied’it to flows over cylinders and spheres and also for heat 
transfer to a sphere. This method is superior to the fully finite-difference schemes in 
that, at  small and moderate Reynolds numbers, we not only solve very few terms, 
but we also deal with a set of ordinary differential equatiQns instead of partial 
differential equations. 

We first d e h e  the four dependent variables in terms of an unknown function of r ,  
and Legendre or associated Legendre functions : 

m 1 m 1 

$G.i = z Fn(r) J Pn(t)  dt; $o = z ja(c)J  ~ , ( t ) d t ;  (10% b)  
n-1 n-1 

n-1 n-1 

where Pn(z) and Ph(z) are the Legendre and first associated Legendre functions of 
order n, and z = cos 8. We have now defined the four variables in terms of a series of 
functions of radius (gn,Gn,fn,Fn) and of angle (Pn(z), P;(z)). We now use the 
orthogonality of Legendre and associated Legendre functions to convert the partial 
differential equations (3 and 4) into ordinary differential equations of a series form. 
We note that 

Substituting this into (10a, b), we obtain 

Substituting (12) into ( l ) ,  we obtain: 

Substituting these into (3a) and (4b) using the orthogonality of the Legendre 
functions gives 

Fn = -rn(n+l)G,; f ,”-(n++)2fn = -e!sn(n+l)g,. (15a, b )  
F”--  n(n+ 1)  

r2 

Boundary conditions (5)-(9) become : 

8 

Fn(r)+O as r+O; 

Gn(r)+O as r+O.  
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The boundary conditions a t  the outer edge of the external flow (k+ CQ) are given as 
follows : 

fn(t) +e" an1 as t+ CQ, (21) 

g n ( f ) + o  as t+ 00. (22) 

where S,, is the Kronecker delta. 

Substituting in the appropriate series into (3b)  and (4b)  yields: 
a, 

Z [ r2Gi+2rGi-n(n+1)Gn]P' ,  
n-1 

=+Re, [  Z m ( F " P " ( r G i - G i ) P : + A G 8 q ) ] .  F'P; (23a)  
n-i i-i n(n+ 1) 

Talman (1968) gives a method of transforming a product of Legendre functions into 
a series of a single Legendre or Associated Legendre functions, using the Wigner 
'3-J'  coefficients. Rottenberg et al. (1959) present an overview of the theory of 
' 3-J' coefficients as they relate to spherical harmonics. 

Combining all products of Legendre and Associated Legendre functions (after 
Talman 1968), then using the orthogonality of these functions, we rid (23a,  b)  of all 
Legendre functions. Hence we are left with ordinary differential equations : 

r2Gi+2rGi-n(n+ l ) C ,  = Sni, g i + g i - n ( n + l ) g ,  = S,,,, (24% b)  

where 

ra, a, 1 1  

with 

being the Weigner '3-J' symbol. 
Equations (24a)  and (24b) are now truncated by setting F, = G, = f, = g n  = 0 for 

all n > no. Where no is dependent upon the Reynolds number, as Re, becomes larger 
no does also. This is the main limiting factor for the upper bound of Reynolds numbers 
as Brabston & Keller (1975) state that the computation time for their scheme was 
proportional to nt. The actual value of no must be found through trial and error 
by increasing no for each Reynolds number until convergence is assumed. As an 
example, Dennis & Walker (1971) used no = 6 for Re, < 1 but no = 20 for Re, = 40. 
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We have set no = 4, for Re, < 1.0. The choice of no = 4 for this analysis is further 
discussed in $5. 

The main advantage of the serives truncation method arises from the fact that the 
problem is reduced to the solution of ordinary differential equations. First, the 
necessity of approximating derivatives in the direction by finite differences is 
avoided. This is known to present difficulties in the far-wake region behind the sphere, 
and i t  may cause computation instability inside the fluid sphere. According to Dennis 
& Walker (1971), this method uses less computer core storage compared to fully 
finite-difference methods. Therefore, the series, truncation method is best suited for 
the flows in the low- and moderate-Reynolds-number range where only a few terms 
are required for good accuracy. 

Equations (24a) and (24b) in their truncated form and the associated boundary 
conditions (18), (20) and (22) present a set of boundary-value problem equations. We 
define (24a) and (24b) as the vorticity equations and (15a) and (15b) as the 
stream-function equations. The particular equation for a given value of n is called 
the nth mode. 

These equations were solved iteratively from n = 1 to n = no, one mode at a time, 
holding the values of all parameters in other modes constant until all boundary 
conditions were satisfied for this given mode. We then relaxed the parameters of this 
mode and performed the same operation on the next mode. During the above primary 
iteration the nonlinear terms (the ‘Sn’ terms) were held constant. A t  the end of each 
primary-iteration cycle the nonlinear terms were relaxed and the primary-iteration 
cycle was then repeated until convergence requirement was satisfied. 

Finite-difference methods were used to calculate all derivatives with a tridiagonal 
matrix algorithm used to solve both the vorticity and the stream-function equations. 
Use of these methods presented instability problems as the Reynolds number was 
increased. This was remedied by setting all nonlinear terms equal to zero for all 
5 2 3.96 and setting 5, = 5.5, a t  which the free-stream conditions were assumed. The 
justification for this is based on an analysis that the error due to the neglect of the 
nonlinear terms is of the order (Re,/exp ( E ) )  which is acceptable in this study. 

For most of the computations, the interior nonlinear terms were neglected, i.e. 
Re, = 0. Computations were also performed including the interior nonlinear terms to 
investigate the effects of non-zero Re,. We varied the interior Reynolds number from 
near zero to two orders of magnitude greater than that of the exterior Reynolds 
number. This variation of Rei was performed from Re, = 0.1 to Re, = 1.0 and it had 
a negligible effect on the drag coefficient. 

These calculations were performed on a Prime 400 computer. We used 40 interior 
and 196 exterior node points in performing the computations, with the exception of 
the solid-sphere calculation where 147 exterior nodal points were used. Also, when 
plotting the parameters, more interior nodes were used to obtain better resolution 
near the centre. 

5. Results and comparisons 
We will use primarily the drag coefficient as a means of reporting and comparing 

our results. Results obtained are compared with analytical creeping-flow solutions, 
those of Dennis & Walker (1971) for solid spheres, and those of Brabston (1974) for 
gas bubbles. The drag coefficient CD is defined as 

8-2 
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where F is the drag force and po is the exterior density. Brabston (1974) gives the 
following as the drag coefficient for a fluid sphere without any interfacial mass 
transfer : 

C D -  - -e*[[ 

rn rn 1 

- 2 uv sin2 8 d8 + 1.. u2 sin 28 do], (27) 
J O  0 

where P(6, 8) is pressure. 

the current case of no interfacial mass transfer, leaving, after much manipulation, 
We evaluate this coefficient only at the interface, hence the u terms are zero for 

where C D  = c D ( f ) + c D ( ~ ) ,  

with CD(j)  and C,(p) being the drag coefficients due to friction and pressure, 
respectively. This derivation is obtained by integrating the pressure (as given in the 
Naviedtokes equation) and the vorticity around the surface of the droplet. The drag 
on the fluid sphere can be calculated from a knowledge of g, (O) ,  g ; ( O ) , j , ( O )  andfk(0). 
These coefficients are given in tables 1 and 2 for some typical caaes. 

As seen from tables 1 and 2, the absolute values of gn, g;, andfk drop dramatically 
as n increases. This is the chief reason that no = 4 is adopted in this study. no = 6 
has been applied to some cases, but the improvement did not show up in the results 
because the improvement is of the order of the convergence criterion. 

For comparison with the analytical creeping-flow solution, the value of CD for 
Re, + 0 is given as 

(29) 
8 1+1.5@ 

CDO = ..,[ l+@,,fil* 

For example, with a solid sphere, @,,-too, C ,  is equal to 12/Re0. Both Brabston 
(1974) and Dennis & Walker (1971) have calculated the drag coefficients for the 
special case of a solid sphere. The comparison is shown in table 3, with much of the 
variation due to the use of different 5, values, where the free-stream condition is set. 
Other factors such as step size, convergence criterion, and type of computer would 
also contribute to the slight differences. 

We will examine next the effect of density ratios, @,, = p i / p o ,  on the drag 
coefficient. The results obtained are for the case of OP/@,, = 100, i.e. Re, = 100Re,, 
which covers the range of the most practical applications because @,, and QP cannot 
be varied arbitrarily for realistic material. In  table 4, @,, varying from 0.1 to 10 
corresponds to GP going from 10 to lo3. The drag coefficient for the pseudo-physical 
case of the same Re, and @,, but zero op is also shown in the parenthesis for the 
purpose of comparison. It is apparent that the variation of the density ratios has 
almost no effect on the drag coefficient. Due to the insensitivity of CD with OP, most 
of the sample calculations presented here were done under the condition of Re, = 0. 
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Re0 
0.1 

0.5 

1 .o 

Re0 
0.1 

0.5 

1 .o 

@P 

0.333 
1 .OO 
3.0 

0.333 
1 .o 
3.0 

0.333 
1 .o 
3.0 

00 

co 

Go 

@P 

0.333 
1 .o 
3.0 

0.333 
1 .o 
3.0 

0.333 
1 .o 
3.0 

co 

00 

00 

81 
-1.1376 
- 1.2656 
- 1.3935 
-1.5214 

-1.1910 
- 1.3309 
- 1.4718 
- 1.6136 

-1.2521 
- 1.4048 
- 1.5622 
-1.7176 

s; 
2.2734 
2.5293 
2.7849 
3.0404 

2.3823 
2.6616 
2.9429 
3.2263 

2.5112 
2.8160 
3.1278 
3.4418 

9a 
0.0059 
0.0079 
0.0099 
0.0120 

0.0280 
0.0376 
0.0475 
0.0574 

0.0528 
0.0715 
0.0907 
0.1098 

9; 
-0.0218 
-0.0276 
-0.0334 
-0.0390 

-0.1067 
-0.1347 
- 0.1627 
-0.1898 

-0.2080 
-0.2629 
-0.3165 
-0.3694 

gs 
0.9008 x 10-5 

0.9501 x 10-5 
0.8908 x 10-5 

0.9747 x 

0.1984 x 
0.2077 x 
0.1920 x 
0.1671 x 

0.6541 x 
0.6426 x 
0.5269 x 
0.3730 x 

s; 
0.7333 x lo-' 
0.1130~ 
0.1776 x 
0.2395 x 

0.7792 x lo-' 
0.1349 x 

0.2029 x 

0.6737 x 
0.1157 x 
0.1610 x 
0.1915 x 

0.2009 x 10-3 

TABLE 1. Values of g, (O)  and g&, for Re, = 0 

s 4  

0.6772 x 
0.9403 x 
0.1424 x lo-' 
0.2108 x lo-' 

0.1179 x 

0.2397 x 
0.3367 x 

0.9451 x 
0,1305 x lo-' 

0.2597 x lo-' 

0.1650 x 10-5 

0.186 x 10-4 

s; 
-0.7859 x lo-' 
-0.1224 x lo-' 
-0.1713 x lo-' 
-0.2163 x lo-' 

-0.4910 x lop5 
-0.1078 x low4 
-0.1742 x 
-0.2356 x 

-0.8362 x lop4 

-0.1793 x 

-0.3904 x 10-4 

-0.1340 x 10-3 

Re0 @P f; f; f8' fl 
0.1 0.333 0.7575 -0.0096 -0.2477 x -0.2677 x lo-' 

1 .o 0.5048 -0.0067 -0.1285 x 10-4 -0.1681 x lo-' 
3.0 0.2524 - 0.0035 -0.4893 x -0.9699 x lop8 
Go O . o o 0 0  O . o o 0 0  O . o o 0 0  O .oo00  

0.5 0.333 
1 .o 
3.0 

00 

1 .o 0.333 
1 .o 
3.0 
co 

0.7916 
0.5309 
0.267 1 
O.oo00  

0.8333 
0.5603 
0.2820 
O.oo00  

-0.0456 
-0.0320 
-0.0166 

O . o o 0 0  

-0.0860 
-0.0609 
-0.0319 

O . o o 0 0  

-0.5455 X lo-' 
-0.2739 x 
-0.9886 x lo-' 

O . o o 0 0  

-0.1805 X lo-* 
-0.8473 x 
-0.2670 x 

O.oo00  

TABLE 2. Values offA(0) for Re, = 0 

-0.4664 x 10-5 
-0.2949 x 10-5 
-0.1620 x 

O.oo00  

- 0.3739 x lo-' 
-0.2332 x 
-0.1267 x lo-' 

O . o o 0 0  

Moreover, table 4 also demonstrates the variation of viscosity ratios on the drag 
coefficients for low-Reynolds-number flows. The drag coefficients decrease with 
increasing Re, but increase with increasing @,,. 

Table 5 again shows the effects of viscosity ratio with a complete spectrum of @p.. 

These results are also plotted in figure 2 with drag coefficient normalized by 
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Present results Brabston 
( 1974) 

0.1 122.31 121.65 122.10 
0.2 61.97 61.71 - 
0.5 25.87 25.82 25.74 
0.8 16.82 16.79 
1 .o 13.78 13.76 13.72 

Re0 6, = 4.9 5, = 5.5 6, = 4.9 

- 

TABLE 3. Drag coefficient for @,, = co (solid sphere) 

Dennis & 
Walker (1971) 

122.10 
62.02 
25.85 
16.76 
13.72 

6, = 4.9 

Re0 @,, = 0.1, ap = 10 = 1.0, Gp = 100 @,, = 10.0, @p = 10s 

0.1 84.46 (84.46) 101.20 (102.20) 117.93 (117.93) 
0.5 17.64 (17.63) 21.30 (21.30) 24.99 (24.99) 
0.7 12.85 (12.84) 15.57 (15.57) 18.32 (18.30) 

TABLE 4. Comparison of drag coefficients for Re, = 0 with those for 
Re, = 100Reo (the latter being in parentheses) 

0.9 - _  12.38 (12.38) - _  

Re, 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

@,, = o.ot 
80.83 
- 

- 

16.85 
- 

- 

8.795 

@JP = 0.10 a,, = 0.333 a,, = 1.00 @,, = 3.0 

84.46 90.97 101.20 111.43 
- 45.99 51.23 56.46 

28.78 31.04 34.61 38.20 
- 23.55 26.29 29.04 

17.64 19.06 21.30 23.55 
- 16.06 17.96 19.87 

12.85 13.90 15.57 17.24 
12.29 13.77 15.28 

10.20 1 1.03 12.38 13.74 
- 10.03 11.25 12.51 

t Gas bubble, Brabston (1974). 
$ Solid sphere, present solution. 

- 

@,, = 10.0 

117.93 

40.48 

24.99 

18.32 

14.60 

- 

- 

- 

- 

- 

TABLE 5. Drag coefficients for various a,, with Re, = 0 

@,, = a$ 
121.65 
61.71 
41.80 
31.81 
25.82 
21.82 
18.94 
16.79 
15.11 
13.76 

creeping-flow drag, i.e. (29). The curves in figure 2 have been best-fitted with the 
following equation : 

The trends that C, is almost independent of Of but is strongly dependent on Op and 
Re, may be explained from the continuity of shear stress a t  the interface which 
induces the motion inside the fluid sphere. The higher the Gp, the larger the internal 
resistance to motion and, therefore, the larger the C ,  values. Inside the droplet, the 
magnitude of the velocities is always significantly lower than that of the free-stream 
velocities as seen in figure 4 and Of is only involved through (25a),  the nonlinear 
momentum flux term, which is a t  least one order of magnitude smaller than the 
viscous term at low Reynolds number. Therefore, one would expect Gf to  have a lesser 
effect on the drag coefficient. We can also predict from these two equations that C ,  

c~ = ~ ~ , + 0 . 0 ~ 2 6 ( ~ ~ ,  Re,)2. (30) 
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0.0 0.5 1 .o 
Re, 

FIQURE 2. Ratio of drag coefficient to that of creeping flow as a function of Re, and GP. Calculated 
values: 0,  9 P = 00;  A, 9 P = 3 ;  +, GP= 1 ;  ., 9,,=0.333; 0 ,  9 P = 0 .  Data lines 
C, = C,,+0.O126(CD, Re,)%. 

Re, 4jP = 0.1 GP = 1.0 GP = 10.0 

0.1 0.6670 0.6670 0.6670 
0.3 0.6669 0.6669 0.6669 
0.5 0.6667 0.6667 0.6667 
0.7 0.6665 0.6665 0.6665 
0.9 0.6662 0.6662 0.6662 

TABLE 6. Ratio of friction drag to total drag 

Abdel-Aim & 
Present resulta Hamielec (1975) @P 

0.0995 9.24 8.75 
0.3010 9.93 9.60 
0.5540 10.55 10.01 

TABLE 7. Comparison of drag coefficient for Re, = 1 

does not depend on Qp. The ratio of friction drag to total drag vanes only slightly 
with Re, as shown in table 6. Friction drag is about twice as large as the pressure 
drag. Comparisons were also made in table 7 between the current results and those 
of Abdel-Alim & Hamielec (1975) at Re, = 1 for various Qp. Abdel-Alim and Hamielec 
(1975) predict drag consistently lower by 5 % . The differences are thought probably 
to be due to their not posting the free-stream condition far enough from the interface 
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L -0.00s 

-".-La 

I 
n M-c 

FICWRE 3. Stream-function contours for Re,, = 0.7 and (a) Gp = 0.333, ( b )  Gp = 1.0, 
and (c) GP = 3.0: -, current calculations; ---, H-R solutions. 

in their finite-difference numerical procedure. They set the free-stream condition a t  
a distance of 28.5 radii from the interface, while ours is at 245 radii. 

Figure 3 plots the stream-function contours for Reo = 0.7 and different viscosity 
ratios. The dotted lines represent the creeping-flow solutions. The inertia effect on 
the streamlines is significant only in the upstream of the fluid sphere for the external 
Aows and two streamlines almost coincide with each after the equator. This is thought 
to be related to the fact that the vorticity and the pressure gradient are higher in 
magnitude in the upstream (90' < 8 < 180') than those in the downstream. The 
variations of the tangential velocity and the pressure coefficient, K(B), over the 
surface of the sphere are shown in figures 4 and 5. 

The pressure coefficient is defined as : 
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FIQURE 4. Tangential velocity at the interface for Re, = 0.7 and GP = 0.333, 
1.0, and 3.0; -, current calculations; ---, H-R solutions. 
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FIGURE 5(a ) .  For caption see p. 228. 

where 
4 ,  

K ( K )  = 1+-  Z ( - l ) n n ( n + l )  Jam g,(E) dE. 

P(0)  and P, are pressures on the surface of the sphere and far away from the sphere, 
respectively. Therefore, the inclusion of the inertia term may more sensitively 
contribute to the force balance in the upstream part of the fluid sphere. 

Re, n-1 
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FIQURE 5. Pressure coefficient over the surface of the fluid sphere for Re, = 0.7 and (a) a,, = 0.333, 
(a) @,, = 1.0, and (c) @,, = 3.0: -, current calculations; ----, H-R solutions. 
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After examining the pressure distributions in figures 5 (a-c), it is plausible to note 
that the pressure is very insensitive to the variation of Gp. The deformation tendency 
is small because the pressure hardly deviates from that of Hadamard-Rybczynski. 
Based on the pressure changes along the interface, the droplet will tend to deform 
into an oblate spheroid or a spherical cap. The above observations are consistent with 
the results of Taylor & Acrivos (1964), who found, by singular perturbation 
technique, that the deformation is of the order or Re: and is insensitive to Gp at low 
Reynolds number. 

6. Conclusion 
It may be concluded that, for the ratios studied, the observations of Nakano & 

Tien (1963) that the density ratio has little effect on the drag coefficient are valid. 
Also, the ratio of pressure-induced drag to that induced by friction is nearly constant 
at 1 :2. 

In  general, the ratio of the drag coefficient to the drag coefficient for the creeping-flow 
solution increases nearly linearly with the largest deviation for the solid sphere, and 
the smallest for a gas bubble. The drag coefficient may be well correlated by the 
equation 

C, = C,,+0.0126(CD, Re,)2.  
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